文章深入探讨了 Anthropic 近期发布的“Agent Skills”技术协议,旨在解决大模型在执行复杂任务时对领域专业知识模块化、可扩展注入的需求。该协议通过一套结构化的指令、脚本和资源文件夹,使得智能体能够动态发现并加载这些内容,从而在特定任务上表现更优。文章详细阐述了 Agent Skills 的架构,包括其文件夹结构、SKILL.md 文件格式,以及如何绑定附加内容和管理技能上下文。ModelScope 社区在其开源项目 MS-Agent 中,推出了对 Agent Skills 协议的开源实现,并介绍了其核心组件和多层次渐进式上下文加载机制(从元数据到资源和脚本的按需加载)。MS-Agent 的主要特性包括标准协议兼容、启发式上下文加载、自主执行能力、技能管理、安全沙箱执行和多文件类型支持,并提供了详细的安装和使用代码示例,展示了其在实际应用中的潜力。
src="https://api.eyabc.cn/api/picture/scenery/?k=a82e2612&u=https%3A%2F%2Fmmbiz.qpic.cn%2Fmmbiz_jpg%2FHytN6OfQHzU7d6uodL62HueibmPQz4z38xVHhcXIWNglCQd13xVW7rT84ISbJW9ok6XKndg95RNJWutllVXFuKQ%2F0%3Fwx_fmt%3Djpeg">
大模型能力的不断提升,使得可与完整计算环境交互的通用智能体构建成为可能,实现在多个领域中完成复杂的任务。然而,随着这些智能体日益强大,我们也亟需更可组合、可扩展且可移植的方式来赋予它们特定领域的专业知识。
Anthropic 近期发布的“Agent Skills(智能体技能)”技术协议,通过一套结构化的指令、脚本与资源文件夹,使得智能体可动态发现并加载这些内容,从而在特定任务上表现更优。通过Skills ,专业技能得以被封装为模块化、可组合的能力和资源模块。这使得LLM的能力能被系统化的扩展,兼顾通用性与专用性。
ModelScope 社区在其开源的agent项目MS-Agent (https://github.com/modelscope/ms-agent)中,推出了对Agent Skills协议的开源实现,本文将详细介绍其概念、协议和代码实现。
MS-Agent中Skills实现:
https://github.com/modelscope/ms-agent/tree/main/projects/agent_skills
Anthropic 关于 Agent Skills的介绍
https://docs.claude.com/en/docs/agents-and-tools/agent-skills
01
背景
随着模型能力提升,智能体已能与完整计算环境(如代码执行、文件系统)交互,执行跨领域复杂任务,更强大的智能体需要模块化、可扩展、可移植的方式注入领域专业知识,一个常规的做法是使用"Tool Calling"的方式,目前MCP(Model Context Protocol)协议已成为业界普遍采用的工具调用标准接口协议;然而,复杂的功能需求客观上对工具的承载能力带来了挑战,为了应对这一问题,Skills应运而生,其采用更加复杂的上下文表征,附带资源文件和可执行脚本,通过启发式上下文加载的方式来压缩上下文,使得智能体可以完成更加复杂的任务。
从可复用的视角看,Skills理念为“技能即知识”,将人类的流程性知识打包为可复用、可组合的“技能”,无需为每个场景重建定制智能体,以结构化文件夹形式(含指令、脚本、资源)动态加载,使智能体在特定任务上表现更优。构建技能如同编写入职指南,降低专业化门槛,任何人都能通过提炼并共享自身的流程性知识,以模块化方式为智能体赋予特定能力。
02
Agent Skills是什么?
1、架构
-
智能体技能架构

-
文件夹结构
skill-name/├── SKILL.md # Main skill definition (Required)├── reference.md # Detailed reference material (Optional)├── LICENSE.txt # License information (Optional)├── resources/ # Additional resources (Optional)│ ├── template.xlsx # Example files│ └── data.json # Data files└── scripts/ # Executable scripts (Optional)├── main.py # Main implementation└── helper.py # Helper functions
2、SKILL.md 文件格式
SKILL.md 文件使用YAML前置内容定义元数据,后续为详细说明的Markdown内容。

💡 说明:
-
name和description字段为必填项。
-
SKILL.md文件的正文部分应提供关于技能的全面描述,包括功能、使用说明、参考资料、资源和示例。SKILL.md示例:https://github.com/anthropics/skills/blob/main/document-skills/pdf/SKILL.md
3、绑定附加内容
附加的文件可以包含在SKILL.md中以扩展技能功能,例如:
-
References (例如
reference.md和forms.md)

-
Scripts

-
Scrips目前支持的类型包括python、shell、js等
4、技能和上下文
-
推荐设置技能文件的token限制,以确保在上下文窗口限制内高效加载


03
技能的实现
03
技能的实现
1、概览
MS-Agent框架的AgentSkills模块是对Anthropic-Agent-Skills协议的实现(Beta版本)。
Agent Skills实现了多层次渐进式上下文加载机制,有效管理技能的发现与执行:
-
Level 1 (Metadata): 仅加载技能元数据(名称、描述)以进行语义搜索
-
Level 2 (Retrieval): 检索相关技能并加载SKILL.md全文
-
Level 3 (Resources): 进一步加载技能所需的参考资料和资源文件
-
Level 4 (Analysis|Planning|Execution): 分析技能上下文,自主制定计划和任务列表,并加载所需资源和运行相关脚本
这种方法在提供全面技能能力的同时,最大限度地减少资源消耗。
-
核心组件
|
组件 |
描述 |
|
|
主流程 |
|
|
加载和管理技能 |
|
|
使用语义搜索查找相关技能 |
|
|
技能上下文管理 |
|
|
技能执行模块 |
|
|
技能Schema定义 |
2、主要特性
-
📜 标准技能协议:完全兼容 Anthropic Skills 协议
-
🧠 启发式上下文加载:仅按需加载必要上下文(如
References、Resources和Scripts)
-
🤖 自主执行能力:智能体可根据技能定义,自主分析、规划并决策需调用的脚本与资源
-
🔍 技能管理支持:支持批量加载技能,并能根据用户输入自动检索与发现相关技能
-
🛡️ 代码执行环境:可选本地直接执行代码,或通过 ms-enclave (https://github.com/modelscope/ms-enclave) 提供的安全沙箱执行(自动安装依赖、实现环境隔离)
-
📁 多文件类型支持:支持文档、脚本与资源文件等多种类型
-
🧩 可扩展设计:技能数据结构模块化,提供如
SkillSchema和SkillContext等实现,便于扩展与定制
3、安装
-
Install from PyPI
pip install 'ms-agent>=1.4.0'
-
Install from Source
git clone git@github.com:modelscope/ms-agent.gitcd ms-agentpip install -e .
-
Configuration
export OPENAI_API_KEY="your-api-key"export OPENAI_BASE_URL="your-base-url"
4、使用方法
下面是一个实现流场粒子艺术生成的示例
import osfrom ms_agent.agent import create_agent_skilldef main():"""Main function to create and run an agent with skills."""work_dir: str = './temp_workspace'# Refer to `https://github.com/modelscope/ms-agent/tree/main/projects/agent\_skills/skills\`skills_dir: str = './skills'use_sandbox: bool = True## Configuration for ModelScope API-Inference, or set your own model with OpenAI API compatible format## Free LLM API inference calls for ModelScope users, refer to [ModelScope API-Inference](https://modelscope.cn/docs/model-service/API-Inference/intro)model: str = 'Qwen/Qwen3-235B-A22B-Instruct-2507'api_key: str = 'xx-xx' # For ModelScope users, refer to `https://modelscope.cn/my/myaccesstoken\` to get your access tokenbase_url: str = 'https://api-inference.modelscope.cn/v1/'agent = create_agent_skill(skills=skills_dir,model=model,api_key=os.getenv('OPENAI_API_KEY', api_key),base_url=os.getenv('OPENAI_BASE_URL', base_url),stream=True,# Note: Make sure the `Docker Daemon` is running if use_sandbox=Trueuse_sandbox=use_sandbox,work_dir=work_dir,)user_query: str = ('Create generative art using p5.js with seeded randomness, flow fields, and particle systems, ''please fill in the details and provide the complete code based on the templates.')response = agent.run(query=user_query)print(f'\n\n** Agent skill results: {response}\n')if __name__ == '__main__':main()
本地执行
-
若
use_sandbox=False,技能脚本将在本地环境中直接执行
-
请确保您信任该技能脚本,以避免潜在的安全风险
-
请确保本地 Python 环境中已安装脚本所需的全部依赖项
沙箱执行
-
若
use_sandbox=True,技能脚本将通过 ms-enclave (https://github.com/modelscope/ms-enclave) 在隔离的 Docker 容器中执行
-
该方式提供安全的执行环境,可有效防止对宿主系统造成潜在危害
-
请确保您的机器上已安装 Docker,并且 Docker 服务(Docker Daemon)正在运行
-
沙箱环境将根据技能声明的依赖项自动安装所需依赖,无需手动配置
运行结果

04
参考文档
04
参考文档
Anthropic Agent Skills官方文档:
https://docs.claude.com/en/docs/agents-and-tools/agent-skills
Anthropic Skills GitHub仓库:
